UPSC Civil Services Main 1995 - Mathematics Linear Algebra

Brij Bhooshan
Asst. Professor
B.S.A. College of Engg \& Technology
Mathura

1 Linear Algebra

Question 1(a) Let $\mathbf{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right)$ be a linear transformation on \mathbb{R}^{3}. What is the matrix of \mathbf{T} w.r.t. the standard basis? What is a basis of the range space of \mathbf{T} ? What is a basis of the null space of \mathbf{T} ?

Solution.

$$
\begin{aligned}
\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right) & =\mathbf{T}(1,0,0)=(3,-2,-1)=3 \mathbf{e}_{\mathbf{1}}-2 \mathbf{e}_{\mathbf{2}}-\mathbf{e}_{\mathbf{3}} \\
\mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right) & =\mathbf{T}(0,1,0)=(0,1,2)=\mathbf{e}_{\mathbf{2}}+2 \mathbf{e}_{\mathbf{3}} \\
\mathbf{T}\left(\mathbf{e}_{\mathbf{3}}\right) & =\mathbf{T}(0,0,1)=(1,0,4)=\mathbf{e}_{\mathbf{1}}+4 \mathbf{e}_{\mathbf{3}} \\
\mathbf{T} \Longleftrightarrow \mathbf{A} & =\left(\begin{array}{ccc}
3 & 0 & 1 \\
-2 & 1 & 0 \\
-1 & 2 & 4
\end{array}\right)
\end{aligned}
$$

Clearly $\mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right), \mathbf{T}\left(\mathbf{e}_{\mathbf{3}}\right)$ are linearly independent. If $(3,-2,-1)=\alpha(0,1,2)+\beta(1,0,4)$, then $\beta=3, \alpha=-2$, but $2 \alpha+4 \beta \neq-1$, so $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right), \mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right), \mathbf{T}\left(\mathbf{e}_{\boldsymbol{3}}\right)$ are linearly independent. Thus $(3,-2,-1),(0,1,2),(1,0,4)$ is a basis of the range space of \mathbf{T}.

Note that $\mathbf{T}\left(x_{1}, x_{2}, x_{3}\right)=0 \Leftrightarrow x_{1}=x_{2}=x_{3}=0$, so the null space of \mathbf{T} is $\{0\}$, and the empty set is a basis. Note that the matrix of \mathbf{T} is nonsingular, so $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right), \mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right), \mathbf{T}\left(\mathbf{e}_{\boldsymbol{3}}\right)$ are linearly independent.

Question 1(b) Let \mathbf{A} be a square matrix of order n. Prove that $\mathbf{A x}=\mathbf{b}$ has a solution $\Leftrightarrow \mathbf{b} \in \mathbb{R}^{n}$ is orthogonal to all solutions \mathbf{y} of the system $\mathbf{A}^{\prime} \mathbf{y}=\mathbf{0}$.

Solution. If \mathbf{x} is a solution of $\mathbf{A x}=\mathbf{b}$ and \mathbf{y} is a solution of $\mathbf{A}^{\prime} \mathbf{y}=\mathbf{0}$, then $\mathbf{b}^{\prime} \mathbf{y}=\mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{y}=0$, thus \mathbf{b} is orthogonal to \mathbf{y}.

Conversely, suppose $\mathbf{b}^{\prime} \mathbf{y}=0$ for all $\mathbf{y} \in \mathbb{R}^{n}$ which is a solution of $\mathbf{A}^{\prime} \mathbf{y}=\mathbf{0}$. Let $\mathcal{W}=\mathbf{A}\left(\mathbb{R}^{n}\right)=$ the range space of \mathbf{A}, and \mathcal{W}^{\perp} its orthogonal complement. If $\mathbf{A}^{\prime} \mathbf{y}=\mathbf{0}$ then $\mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{y}=0 \Rightarrow(\mathbf{A} \mathbf{x})^{\prime} \mathbf{y}=0$ for every $\mathbf{x} \in \mathbb{R}^{n} \Rightarrow \mathbf{y} \in \mathcal{W}^{\perp}$. Conversely $\mathbf{y} \in \mathcal{W}^{\perp} \Rightarrow \forall \mathbf{x} \in$ $\mathbb{R}^{n} .(\mathbf{A x})^{\prime} \mathbf{y}=0 \Rightarrow \mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{y}=0 \Rightarrow \mathbf{A}^{\prime} \mathbf{y}=\mathbf{0}$. Thus $\mathcal{W}^{\perp}=\left\{\mathbf{y} \mid \mathbf{A}^{\prime} \mathbf{y}=\mathbf{0}\right\}$. Now $\mathbf{b}^{\prime} \mathbf{y}=0$ for all $\mathbf{y} \in \mathcal{W}^{\perp}$, so $\mathbf{b} \in \mathcal{W} \Rightarrow \mathbf{b}=\mathbf{A} \mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^{n} \Rightarrow \mathbf{A x}=\mathbf{b}$ is solvable.

Question 1(c) Define a similar matrix and prove that two similar matrices have the same characteristic equation. Write down a matrix having 1, 2, 3 as eigenvalues. Is such a matrix unique?
Solution. Two matrices \mathbf{A}, \mathbf{B} are said to be similar if there exists a matrix \mathbf{P} such that $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}$. If \mathbf{A}, \mathbf{B} are similar, say $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}$, then characteristic polynomial of \mathbf{B} is $|\lambda \mathbf{I}-\mathbf{B}|=\left|\lambda \mathbf{I}-\mathbf{P}^{-1} \mathbf{A P}\right|=\left|\mathbf{P}^{-1} \lambda \mathbf{I P}-\mathbf{P}^{-1} \mathbf{A P}\right|=\left|\mathbf{P}^{-1}\right||\lambda \mathbf{I}-\mathbf{A}||\mathbf{P}|=|\lambda \mathbf{I}-\mathbf{A}|$. (Note that $|\mathbf{X}||\mathbf{Y}|=|\mathbf{X Y}|$.) Thus the characteristic polynomial of \mathbf{B} is the same as that of \mathbf{A}.

Clearly the matrix $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ has eigenvalues $1,2,3$. Such a matrix is not unique, for example $\mathbf{B}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ has the same eigenvalues, but $\mathbf{B} \neq \mathbf{A}$.

Question 2(a) Show that

$$
\mathbf{A}=\left(\begin{array}{ccc}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right)
$$

is diagonalizable and hence determine \mathbf{A}^{5}.

Solution.

$$
\begin{aligned}
& \begin{aligned}
& \Rightarrow \\
& \Rightarrow(5-\lambda)[(4-\lambda)(-4-\lambda)+12]+6[4+\lambda-6]-6[6-3(4-\lambda)]=0
\end{aligned} \\
& \Rightarrow \quad(5-\lambda)\left[\lambda^{2}-4\right]+6[\lambda-2-3 \lambda+6]=0 \\
& \Rightarrow \quad-\lambda^{3}+5 \lambda^{2}+4 \lambda-20-12 \lambda+24=0 \\
& \Rightarrow \quad \lambda^{3}-5 \lambda^{2}+8 \lambda-4=0
\end{aligned}
$$

Thus $\lambda=1,2,2$.
If $\left(x_{1}, x_{2}, x_{3}\right)$ is an eigenvector for $\lambda=1$, then

$$
\begin{aligned}
\left(\begin{array}{ccc}
4 & -6 & -6 \\
-1 & 3 & 2 \\
3 & -6 & -5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\mathbf{0} \\
\Rightarrow 4 x_{1}-6 x_{2}-6 x_{3} & =0 \\
-x_{1}+3 x_{2}+2 x_{3} & =0 \\
3 x_{1}-6 x_{2}-5 x_{3} & =0
\end{aligned}
$$

For more information log on www.brijrbedu.org.
Copyright By Brij Bhooshan @ 2012.

Thus $x_{1}=x_{3}, x_{3}=-3 x_{2}$, so $(-3,1,-3)$ is an eigenvector for $\lambda=1$.
If $\left(x_{1}, x_{2}, x_{3}\right)$ is an eigenvector for $\lambda=2$, then

$$
\begin{aligned}
\left(\begin{array}{ccc}
3 & -6 & -6 \\
-1 & 2 & 2 \\
3 & -6 & -6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\mathbf{0} \\
\Rightarrow 3 x_{1}-6 x_{2}-6 x_{3} & =0 \\
-x_{1}+2 x_{2}+2 x_{3} & =0 \\
3 x_{1}-6 x_{2}-6 x_{3} & =0
\end{aligned}
$$

Thus $x_{1}-2 x_{2}-2 x_{3}=0$, so taking $x_{1}=0, x_{2}=1,(0,1,-1)$ is an eigenvector for $\lambda=2$. Taking $x_{1}=4, x_{2}=1,(4,1,1)$ is another eigenvector for $\lambda=2$, and these two are linearly independent.

Let $\mathbf{P}=\left(\begin{array}{ccc}-3 & 0 & 4 \\ 1 & 1 & 1 \\ -3 & -1 & 1\end{array}\right)$. A simple calculation shows that $\mathbf{P}^{-1}=\frac{1}{2}\left(\begin{array}{ccc}2 & -4 & -4 \\ -4 & 9 & 7 \\ 2 & -3 & -3\end{array}\right)$.
Clearly $\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$.
Now $\mathbf{P}^{-1} \mathbf{A}^{5} \mathbf{P}=\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right)^{5}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 32 & 0 \\ 0 & 0 & 32\end{array}\right)$.

$$
\begin{aligned}
\mathbf{A}^{5} & =\mathbf{P}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 32 & 0 \\
0 & 0 & 32
\end{array}\right) \mathbf{P}^{-1} \\
& =\frac{1}{2}\left(\begin{array}{ccc}
-3 & 0 & 4 \\
1 & 1 & 1 \\
-3 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 32 & 0 \\
0 & 0 & 32
\end{array}\right)\left(\begin{array}{ccc}
2 & -4 & -4 \\
-4 & 9 & 7 \\
2 & -3 & -3
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ccc}
-3 & 0 & 128 \\
1 & 32 & 32 \\
-3 & -32 & 32
\end{array}\right)\left(\begin{array}{ccc}
2 & -4 & -4 \\
-4 & 9 & 7 \\
2 & -3 & -3
\end{array}\right) \\
& =\left(\begin{array}{ccc}
125 & -186 & -186 \\
-31 & 94 & 62 \\
93 & -186 & -154
\end{array}\right)
\end{aligned}
$$

Note: Another way of computing \mathbf{A}^{5} is given below. This uses the characteristic polynomial of $\mathbf{A}: \mathbf{A}^{3}=5 \mathbf{A}^{2}-8 \mathbf{A}+4 \mathbf{I}$ and not the diagonal form, so it will not be permissible here.

$$
\begin{aligned}
\mathbf{A}^{5} & =\mathbf{A}^{2}\left(5 \mathbf{A}^{2}-8 \mathbf{A}+4 \mathbf{I}\right) \\
& =5 \mathbf{A}\left(5 \mathbf{A}^{2}-8 \mathbf{A}+4 \mathbf{I}\right)-8\left(5 \mathbf{A}^{2}-8 \mathbf{A}+4 \mathbf{I}\right)+4 \mathbf{A}^{2} \\
& =25\left(5 \mathbf{A}^{2}-8 \mathbf{A}+4 \mathbf{I}\right)-76 \mathbf{A}^{2}+84 \mathbf{A}-32 \mathbf{I} \\
& =49 \mathbf{A}^{2}-116 \mathbf{A}+68 \mathbf{I}
\end{aligned}
$$

Now calculate \mathbf{A}^{2} and substitute.

Question 2(b) Let \mathbf{A} and \mathbf{B} be matrices of order n. If $\mathbf{I}-\mathbf{A B}$ is invertible, then $\mathbf{I}-\mathbf{B A}$ is also invertible and

$$
(\mathbf{I}-\mathbf{B A})^{-1}=\mathbf{I}+\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}
$$

Show that AB and BA have the same characteristic values.

Solution.

$$
\begin{align*}
& \left(\mathbf{I}+\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}\right)(\mathbf{I}-\mathbf{B} \mathbf{A}) \\
& =\mathbf{I}-\mathbf{B} \mathbf{A}+\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}-\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A B A} \\
& =\left[\mathbf{I}+\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}\right]-\mathbf{B}\left[\mathbf{I}+(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A B}\right] \mathbf{A} \tag{1}\\
\text { Now } & (\mathbf{I}-\mathbf{A B})^{-1}(\mathbf{I}-\mathbf{A B})=(\mathbf{I}-\mathbf{A B})^{-1}-(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A B}=\mathbf{I} \\
\therefore & (\mathbf{I}-\mathbf{A B})^{-1}=\mathbf{I}+(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A B} \\
\text { Substituting in }(1) & \left(\mathbf{I}+\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}\right)(\mathbf{I}-\mathbf{B A}) \\
& =\mathbf{I}+\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}-\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}=\mathbf{I}
\end{align*}
$$

Thus $\mathbf{I}-\mathbf{B A}$ is invertible and $(\mathbf{I}-\mathbf{B A})^{-1}=\mathbf{I}+\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}$ as desired.
We shall show that $\lambda \mathbf{I}-\mathbf{A B}$ is invertible if and only if $\lambda \mathbf{I}-\mathbf{B A}$ is invertible. This means that if λ is an eigenvalue of $\mathbf{A B}$, then $|\lambda \mathbf{I}-\mathbf{A B}|=0 \Rightarrow|\lambda \mathbf{I}-\mathbf{B A}|=0$ so λ is an eigenvalue of BA.

If $\lambda \mathbf{I}-\mathbf{A B}$ is invertible, then

$$
\begin{align*}
& \left(\mathbf{I}+\mathbf{B}(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}\right)(\lambda \mathbf{I}-\mathbf{B A}) \\
& =\lambda \mathbf{I}-\mathbf{B A}+\lambda \mathbf{B}(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}-\mathbf{B}(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A B A} \\
& =\lambda\left[\mathbf{I}+\mathbf{B}(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}\right]-\mathbf{B}\left[\mathbf{I}+(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A B}\right] \mathbf{A} \tag{2}\\
\text { Now } & (\lambda \mathbf{I}-\mathbf{A B})^{-1}(\lambda \mathbf{I}-\mathbf{A B})=\lambda(\lambda \mathbf{I}-\mathbf{A B})^{-1}-(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A B}=\mathbf{I} \\
\therefore & \lambda(\lambda \mathbf{I}-\mathbf{A B})^{-1}=\mathbf{I}+(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A B} \\
\text { Substituting in }(2) & \left(\mathbf{I}+\mathbf{B}(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}\right)(\lambda \mathbf{I}-\mathbf{B A}) \\
& =\lambda \mathbf{I}+\lambda \mathbf{B}(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}-\lambda \mathbf{B}(\lambda \mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}=\lambda \mathbf{I}
\end{align*}
$$

Thus $\lambda \mathbf{I}-\mathbf{B A}$ is invertible if $\lambda \mathbf{I}-\mathbf{A B}$ is invertible. The converse is obvious as the situation is symmetric, thus $\mathbf{A B}$ and $\mathbf{B A}$ have the same eigenvalues.

We give another simple proof of the fact that $\mathbf{A B}$ and $\mathbf{B A}$ have the same eigenvalues.

1. Let 0 be an eigenvalue of $\mathbf{A B}$. This means that $\mathbf{A B}$ is singular, i.e. $0=|\mathbf{A B}|=$ $|\mathbf{A}||\mathbf{B}|=|\mathbf{B A}|$, so $\mathbf{B A}$ is singular, hence 0 is an eigenvalue of $\mathbf{B A}$.
2. Let $\lambda \neq 0$ be an eigenvalue of $\mathbf{A B}$ and let $\mathbf{x} \neq \mathbf{0}$ be an eigenvector corresponding to λ, i.e. $\mathbf{A B x}=\lambda \mathbf{x}$. Let $\mathbf{y}=\mathbf{B x}$. Then $\mathbf{y} \neq \mathbf{0}$, because $\mathbf{A y}=\mathbf{A B x}=\lambda \mathbf{x} \neq \mathbf{0}$ as $\lambda \neq 0$. Now $\mathbf{B A} \mathbf{y}=\mathbf{B A B} \mathbf{x}=\mathbf{B}(\mathbf{A B x})=\lambda \mathbf{B} \mathbf{x}=\lambda \mathbf{y}$. Thus λ is an eigenvalue of $\mathbf{B A}$.

Question 2(c) Let $a, b \in \mathbb{C},|b|=1$ and let \mathbf{H} be a Hermitian matrix. Show that the eigenvalues of $a \mathbf{I}+b \mathbf{H}$ lie on a straight line in the complex plane.

Solution. Let t be as eigenvalue of \mathbf{H}, which has to be real because \mathbf{H} is Hermitian. Clearly $a+t b$ is an eigenvalue of $a \mathbf{I}+b \mathbf{H}$. Conversely, if λ is an eigenvalue of $a \mathbf{I}+b \mathbf{H}$, then $\frac{\lambda-a}{b}$ (note $b \neq 0$ as $|b|=1$) is an eigenvalue of \mathbf{H}.

Clearly $a+t b$ lies on the straight line joining points a and $a+b$:

$$
z=(1-x) a+x(b-a), x \in \mathbb{R}
$$

For the sake of completeness, we prove that the eigenvalues of a Hermitian matrix \mathbf{H} are real. Let $\mathbf{z} \neq \mathbf{0}$ be an eigenvector corresponding to the eigenvalue t.

$$
\begin{aligned}
\mathbf{H z} & =t \mathbf{z} \\
\Rightarrow \overline{\mathbf{z}}^{\prime} \mathbf{H z} & =t \overline{\mathbf{z}}^{\prime} \mathbf{z} \\
\Rightarrow{\overline{\mathbf{z}^{\prime}} \mathbf{H z}}^{\prime} & =\bar{t}_{\overline{\mathbf{z}}^{\prime} \mathbf{z}}^{\prime} \overline{\mathrm{z}}^{\prime} \\
\text { But } \overline{\mathbf{z}}^{\prime} \mathbf{H z} & =\overline{\mathbf{z}}^{\prime} \overline{\mathbf{H}}^{\prime} \mathbf{z}=\overline{\mathbf{z}}^{\prime} \mathbf{H z}=t \overline{\mathbf{z}}^{\prime} \mathbf{z} \\
\Rightarrow t \overline{\mathbf{z}}^{\prime} \mathbf{z} & =\bar{t}^{\prime} \mathbf{z}^{\prime} \mathbf{z} \\
\Rightarrow t & =\bar{t} \quad \because \overline{\mathbf{z}}^{\prime} \mathbf{z} \neq 0
\end{aligned}
$$

Question 3(a) Let A be a symmetric matrix. Show that A is positive definite if and only if its eigenvalues are all positive.

Solution. \mathbf{A} is real symmetric so all eigenvalues of \mathbf{A} are real. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be eigenvalues of \mathbf{A}, not necessarily distinct. Let $\mathbf{x}_{\mathbf{1}}$ be an eigenvector corresponding to λ_{1}. Since λ_{1} and \mathbf{A} are real, $\mathbf{x}_{\mathbf{1}}$ is also real. Replacing $\mathbf{x}_{\mathbf{1}}$ if necessary by $\mu \mathbf{x}_{\mathbf{1}}, \mu$ suitable, we can assume that $\left\|\mathbf{x}_{\mathbf{1}}\right\|=\sqrt{\mathbf{x}_{\mathbf{1}}^{\prime} \mathbf{x}_{\mathbf{1}}}=1$.

Let $\mathbf{P}_{\mathbf{1}}$ be an orthogonal matrix with $\mathbf{x}_{\mathbf{1}}$ as its first column. Such a $\mathbf{P}_{\mathbf{1}}$ exists, as will be shown at the end of this result. Clearly the first column of the matrix $\mathbf{P}_{\mathbf{1}}{ }^{-1} \mathbf{A P} \mathbf{P}_{\mathbf{1}}$ is equal to $\mathbf{P}_{\mathbf{1}}{ }^{-1} \mathbf{A x}=\lambda_{1} \mathbf{P}_{\mathbf{1}}{ }^{-1} \mathbf{x}=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0\end{array}\right)$, because $\mathbf{P}_{\mathbf{1}}{ }^{-1} \mathbf{x}$ is the first column of $\mathbf{P}_{\mathbf{1}}{ }^{-1} \mathbf{P}=\mathbf{I}$. Thus $\mathbf{P}_{\mathbf{1}}{ }^{-1} \mathbf{A} \mathbf{P}_{\mathbf{1}}=\left(\begin{array}{cc}\lambda_{\mathbf{1}} & \mathbf{L} \\ \mathbf{0} & \mathbf{B}\end{array}\right)=\mathbf{P}_{\mathbf{1}}^{\prime} \mathbf{A} \mathbf{P}_{\mathbf{1}}$ where \mathbf{B} is $(n-1) \times(n-1)$ symmetric. Since $\mathbf{P}_{\mathbf{1}}^{\prime} \mathbf{A} \mathbf{P}_{\mathbf{1}}$ is symmetric, it follows that $\mathbf{P}_{\mathbf{1}}{ }^{-1} \mathbf{A} \mathbf{P}_{\mathbf{1}}=\mathbf{P}_{\mathbf{1}}^{\prime} \mathbf{A} \mathbf{P}_{\mathbf{1}}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ \mathbf{0} & \mathbf{B}\end{array}\right)$. Induction now gives that there exists an $(n-1) \times(n-1)$ orthogonal matrix \mathbf{Q} such that $\mathbf{Q}^{\prime} \mathbf{B Q}=\left(\begin{array}{cccc}\lambda_{2} & 0 & \ldots & 0 \\ \ldots & & & \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right)$
where $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ are eigenvalues of \mathbf{B}. Let $\mathbf{P}_{\mathbf{2}}=\left(\begin{array}{ll}1 & \mathbf{0} \\ 0 & \mathbf{Q}\end{array}\right)$, then $\mathbf{P}_{\mathbf{2}}$ is orthogonal and $\mathbf{P}_{\mathbf{2}}^{\prime} \mathbf{P}_{\mathbf{1}}^{\prime} \mathbf{A} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}}=$ diagonal $\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. Set $\mathbf{P}=\mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}} \ldots \mathbf{P}_{\mathbf{n}}$, and $\left(y_{1}, \ldots, y_{n}\right) \mathbf{P}^{\prime}=\mathbf{x}$ then $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\mathbf{y}^{\prime} \mathbf{P}^{\prime} \mathbf{A P} \mathbf{y}=\sum_{i=0}^{n} \lambda_{i}^{2} y_{i}^{2}$.

Since \mathbf{P} is non-singular, quadratic forms $\mathbf{x}^{\prime} \mathbf{A x}$ and $\sum_{i=0}^{n} \lambda_{i}^{2} y_{i}^{2}$ assume the same values. Hence \mathbf{A} is positive definite if and only if $\sum_{i=0}^{n} \lambda_{i}^{2} y_{i}^{2}$ is positive definite if and only if $\lambda_{i}>0$ for all i.

Result used: If $\mathbf{x}_{\mathbf{1}}$ is a real vector such that $\left\|\mathbf{x}_{\mathbf{1}}\right\|=\sqrt{\mathbf{x}_{\mathbf{1}}^{\prime} \mathbf{x}_{\mathbf{1}}}=1$ then there exists an orthogonal matrix with $\mathbf{x}_{\mathbf{1}}$ as its first column.

Proof: We have to find real column vectors $\mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}$ such that $\left\|\mathbf{x}_{\mathbf{i}}\right\|=1,2 \leq i \leq n$ and $\mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}$ is an orthonormal system i.e. $\mathbf{x}_{\mathbf{i}}^{\prime} \mathbf{x}_{\mathbf{j}}=0, i \neq j$. Consider the single equation $\mathrm{x}_{1}^{\prime} \mathbf{x}=0$, where \mathbf{x} is a column vector to be determined. This equation has a non-zero solution, in fact the space of solutions is of dimension $n-1$, the rank of the coefficient matrix being 1. If $\mathbf{y}_{\mathbf{2}}$ is a solution, we take $\mathbf{x}_{\mathbf{2}}=\frac{\mathbf{y}_{2}}{\left\|\mathbf{y}_{2}\right\|}$ so that $\mathbf{x}_{\mathbf{1}}^{\prime} \mathbf{x}_{\mathbf{2}}=0$.

We now consider the two equations $\mathbf{x}_{1}^{\prime} \mathbf{x}=0, \mathbf{x}_{\mathbf{2}}^{\prime} \mathbf{x}=0$. Again the number of unknowns is more than the number of equations, so there is a solution, say $\mathbf{y}_{\mathbf{3}}$, and take $\mathbf{x}_{\mathbf{3}}=\frac{\mathbf{y}_{\mathbf{3}}}{\left\|\mathbf{y}_{\mathbf{3}}\right\|}$ to get $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}$ mutually orthogonal.

Proceeding in this manner, if we consider $n-1$ equations $\mathbf{x}_{1}^{\prime} \mathbf{x}=0, \ldots, \mathbf{x}_{\mathbf{n}-1}^{\prime} \mathbf{x}=0$, these will have a nonzero solution $\mathbf{y}_{\mathbf{n}}$, so we set $\mathbf{x}_{\mathbf{n}}=\frac{\mathbf{y}_{\mathbf{n}}}{\left\|\mathbf{y}_{\mathbf{n}}\right\|}$. Clearly $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}$ is an orthonormal system, and therefore $\mathbf{P}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right]$ is an orthogonal matrix having $\mathbf{x}_{\mathbf{1}}$ as a first column.

Question 3(b) Let \mathbf{A} and \mathbf{B} be square matrices of order n, show that $\mathbf{A B}-\mathbf{B A}$ can never be equal to the identity matrix.

Solution. Let $\mathbf{A}=\left\langle a_{i j}\right\rangle$ and $\mathbf{B}=\left\langle b_{i j}\right\rangle$. Then

$$
\begin{aligned}
\operatorname{tr} \mathbf{A B} & =\text { Sum of diagonal elements of } \mathbf{A B} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i}=\sum_{k=1}^{n} \sum_{i=1}^{n} b_{k i} a_{i k}=\operatorname{tr} \mathbf{B A}
\end{aligned}
$$

Thus $\operatorname{tr}(\mathbf{A B}-\mathbf{B A})=\operatorname{tr} \mathbf{A B}-\operatorname{tr} \mathbf{B A}=0$. But the trace of the identity matrix is n, thus $\mathbf{A B}-\mathbf{B A}$ can never be equal to the identity matrix.

Question 3(c) Let $\mathbf{A}=\left\langle a_{i j}\right\rangle, 1 \leq i, j \leq n$. If $\sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right|<\left|a_{i i}\right|$, then the eigenvalues of \mathbf{A} lie in the disc

$$
\left|\lambda-a_{i i}\right| \leq \sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right|
$$

Solution. See the solution to question 2(c), year 1997. We showed that if $\left|\lambda-a_{i i}\right|>$ $\sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right|$ then $|\lambda \mathbf{I}-\mathbf{A}| \neq 0$, so λ is not an eigenvalue of \mathbf{A}. Thus if λ is an eigenvalue, then $\left|\lambda-a_{i i}\right| \leq \sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right|$, so λ lies in the disc described in the question.

